(Not exhaustive) examples of potentially earliest developments (for release into the environment) in synthetic biology using genome editing or dsRNA based on patent or academic literature. I've chosen the intersection of genome editing/gene silencing with synthetic biology because of the strong push in many countries to specifically de-regulate these or similar uses.

	Insecticide	dsRNA (topical, outdoor use)	Van, B.E., Kubler, L., Raemaekers, R., Bogaert, T., Plaetinck, G., 2011. Methods for Controlling Pests Using RNAi. Devgen NV. https://www.google.co.nz/patents/ EP2347759A2?cl=en "the methods of the invention rely on uptake by the insect of double-stranded RNA present outside of the insect (e. g. by feeding)the present invention also encompasses methods as described above wherein the insect is contacted with a composition comprising the double- stranded RNA."
	Null (negative) segregants: The product of two cycles of genetic engineering. May also be referred to as "DNA-free editing" or similar terms.	Genome editing nucleases, recombinases 	Review of cycle 1 (introduction of mRNA/gRNA using DNA constructs not expected to integrate or replicate or using nucleoprotein particles): https://doi.org/10.1007/s00438-023- 01998-3 Examples of cycle 2 (removal of DNA insertions created by cycle 1): https://doi.org/10.1101/2023.03.02.53079 0 https://doi.org/10.1016/j.tibtech.2009.09.0 08
Packaging/food waste			
	Delaying senescence	dsRNA	Deikman, J., Schwartz, S.H., Zheng, W., Gabriels, S.H.E.J., Hresko, M.C., Li, X., Tao, N., Williams, D.J., Xiong, H., 2017. Methods and Compositions for Delaying Senescence and Improving Disease Tolerance and Yield in Plants. Monsanto Technology LLC. <u>https://patents.google.com/patent/US9840</u> <u>715B1/en</u> "Such plant parts can be sprayed either pre- or post-harvest to provide delayed senescence and/or improved yield in the plant part that results from suppression of EIN2 gene expression." <i>Fillatti, J., Froman, B., Garvey, G.S.,</i> <i>Hemmes, J.C., 2012. Method for Improving</i> <i>Shelf Life by Regulating Expression of</i> <i>Polyphenol Oxidase. Monsanto Technology</i> <i>LLC.</i> <i>https://patents.google.com/patent/WO201</i> <i>4047623A1/en</i> "In some embodiments, methods for reducing or inhibiting discoloration of a plant or plant part following harvest comprising topically applying compositions comprising a polynucleotide and a transfer agent that suppress the target PPO gene"

Medicine, veterinary medicine, rodenticide		
	Genome editing nucleases	D.R.Liu, J.A.Zuris, D.C.Thomas, Delivery System for Functional Nucleases, President and Fellows of Harvard College, 2016. https://patents.google.com/patent/ US9526784B2/en?oq=US+9%2c526%2c784 +B2 "Compositions, methods, strategies, kits, and systems for delivery of functional effector proteins using cationic lipids and cationic polymers are also provided. Functional effector proteins include, without limitation, transcriptional modulators (e.g., repressors or activators), recombinases, nucleases (e.g., RNA- programmable nucleases, such as Cas9 proteins; TALE nuclease, and zinc finger nucleases), deaminases, and other gene modifying/editing enzymes. Functional effector proteins include TALE effector proteins, e.g., TALE transcriptional activators and repressors, as well as TALE nucleases"