Issue Brief¹

Issue Title	Self-spreading vaccines for wildlife
Description	Self-spreading vaccines for wildlife are designed to limit the
	spread of wildlife diseases and potentially reduce zoonotic
	spillover into humans. These approaches generally involve
	engineered live viruses or viral vectors designed to spread
	through a wildlife population to confer resistance to a
	particular pathogen. In some cases, non-replicating viral
	vectors are engineered to re-confer vector replication and
	spread between hosts.
	Some specific examples include:
	• Lassa fever virus vaccines for rodents to prevent
	transmission to humans
	• Vaccines to control Rabies in wildlife
	• Raccoon pox virus vector targeting Pseudogymnoascus
	destructans pathogens in bat populations
Timeline (<5 years, 5-10	Less than five years, already in 2019 for some field trials.
years, >10 years) to	Technology exists to allow for the accelerated development of
environmental release	vaccines, as shown by the COVID-19 public health crisis.
	Thus, these applications may have the potential for rapid
	development. This likely holds true for non-replicating viral
	applications as well.
Potential impacts on the	Wide host specificity for some viruses
objectives of the	• Rapid spread depending on viral vector
Convention	• Lack of stability of modified viruses (e.g., viral evolution,
	recombination)
	• Horizontal gene transfer

¹ Information gathered from the members of the multidisciplinary Ad Hoc Technical Expert Group on Synthetic Biology. Descriptions complemented with publications published by the Secretariat of the Convention on Biological Diversity.

	• Unpredictable effects, such as physiological and ecosystem
	dynamics
	• Uncertainty related to pathogen response to vaccine and
	ability to spill-over to non-target hosts (e.g. poxviruses)
	• Sustainable use could be impacted if target populations of
	the vaccine are used by humans
Other considerations	Potential challenges to risk assessment
	• Potential lack of risk management options (e.g., irreversibility
	of release)
	• Increased potential for transboundary movements
	• Lack of availability of the applications in developing nations
	• Limited capacity for developing nations to manage
	unintended outcomes
	• Implications for free, prior and informed consent of
	potentially affected indigenous peoples and local communities
	• Worldview of indigenous peoples and local communities
	• Dual-use potential
	• Need to address liability and redress prior to release
	• Potential for issue to be conflated with human vaccine
	hesitation and opposition (e.g., misinformation)
	• Social, political and commercial determinants of health, as
	well as alternative interventions