Framework on Estimating Expected Benefits through Facilitating the Nagoya Protocol on Access and Benefit-Sharing:

Interim Report – An Attempt of Estimation of Non-Monetary Benefits

Pyeongchang, Republic of Korea, 8th Wednesday, October 2014

Method of Simulating Ripple Effects by Input-Output Analysis

Faculty of Life and Environmental Sciences
University of Yamanashi

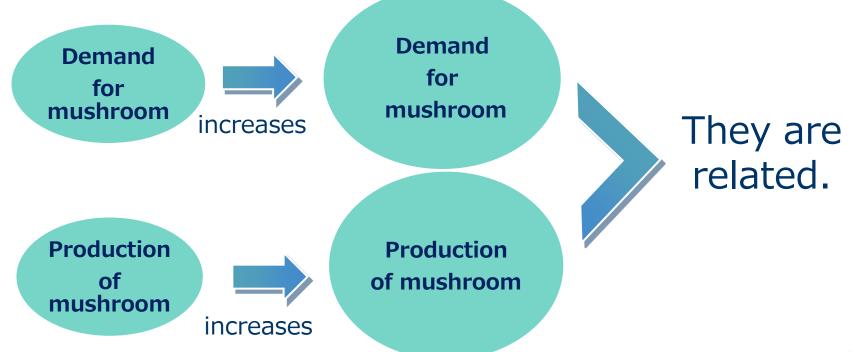
Graduate School of International Development Nagoya University

Method of Simulating Ripple Effects by Input-Output Analysis

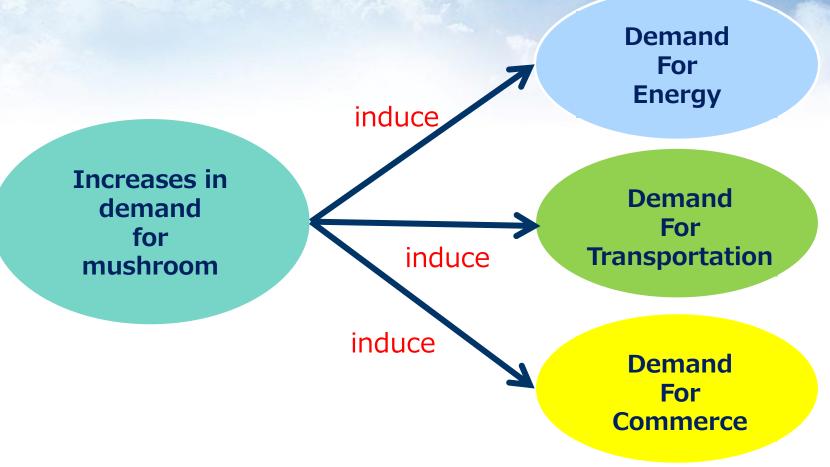
Simulating ripple effect

- Conditions for simulation have been set in the previous presentation.
- Benefits are simulated and are expressed as ripple effects.
- The ripple effects can be calculated by input-output analysis.

What is input-output analysis anyway?


- Input-output analysis is one of the standard analytical models to analyse all the relationships among all the inputs and outputs in production systems in one economy of one country.
- The analysis was explored by Leontief who won a Nobel Prize in Economics.
- During analysis, an input output table (see the next slide) is used and is applied to a general equilibrium model.
- Nowadays, many tables of many countries are
 available.

Proto-type of Non-competitive import I-O table


		Intermediate Demand				Final	Dom Prod
		Ind 1	Ind 2	•••	Ind n	Demand	& Import
Domestic Production	Industry 1	$p^{d}_{1}X^{d}_{11}$	$p^{d}_{1}X^{d}_{12}$	•••	$p^d_1 X^d_{1n}$	$p^d_{1}F^d_{1}$	$p^d_1X^d_1$
	Industry 2	$p^{d}_{2}X^{d}_{21}$	$p^d_2 X^d_{22}$	•••	$p^d_2 X^d_{2n}$	$p^d_2F^d_2$	$p^d_2 X^d_2$
	:	•	:		:	:	:
	Industry n	$p^d_{n}X^d_{n1}$	$p^d_n X^d_{n2}$	•••	$p^d_{n}X^d_{nn}$	$p^d_{n}\!F^d_{n}$	$p^d_n X^d_n$
Import	Industry 1	$p^m_1X^m_{11}$	$p^{m}_{1}X^{m}_{12}$	•••	$p^m_1 X^m_{1n}$	$p^{m}_{1}F^{m}_{1}$	$p^m_1M_1$
	Industry 2	$p^{m}_{2}X^{m}_{21}$	$p^{m}_{2}X^{m}_{22}$	•••	$p^m_2 X^m_{2n}$	$p^m_2 F^m_2$	$p^m_2 M_2$
	:	•	:		:	:	:
	Industry n	$p^m_n X^m_{n1}$	$p^m_n X^m_{n2}$	• • •	$p^m_n X^m_{nn}$	$p^m_n F^m_n$	$p^m_n M_n$
Value added		V_1	V_2	•••	V_n		
5	Domestic Production	$p^d_{1}X_1$	$p^{d}_{2}X_{2}$	•••	$p^d_{\ \mathrm{n}} X_n$		

What is an advantage of inputoutput analysis?

- It can highlight the relationships among inputs and outputs.
- For instance

Induction of inputs

These relationships are strictly expressed by equations

in the next slide.

Demand-supply equilibrium

Nominal base equilibrium (for any j industry)

$$p_j X_{j1} + p_j X_{j2} + \dots + p_j X_{jn} + p_j f_j = p_j X_j$$

Intermediate demands for other industries Final Domestic demands output

Quantity base equilibrium (for any j industry)

$$X_{j1} + X_{j2} + \dots + X_{jn} + f_j = X_j$$

Input coefficient (fixed in the short period)

$$a_{ij} = \frac{X_{ij}}{X_j}$$

What can input-output analysis do in this session's context?

- It can calculate increases in intermediate demands AND value added (incomes)
- if you put the figures of increases in final demands.
- This calculation can be done, using Leontief inverse matrix on the next slide.

Leontief Inverse Matrix

Quantity base equilibrium (for any j industry)

$$a_{j1}X_1 + a_{j2}X_2 + \dots + a_{jn}X_n + f_j = X_j$$
 $a_{ij} = \frac{X_{ij}}{X_j}$

Demand-supply equilibrium in matrix form

$$\mathbf{A}\mathbf{x} + \mathbf{f} = \mathbf{x} \implies [\mathbf{I} - \mathbf{A}]\mathbf{x} = \mathbf{f}$$

Equilibrium output model of I-O Analysis

How can be ripple effects calculated?

- First round ripple effects.
- 1. If final demands increase, intermediate demands will increase.
- 2. For instance, increases in mushrooms induces increases in energy, those of transportation, and those of commerce.

How can be ripple effects calculated?

- Second round ripple effects.
- 1. The first ripple effects result in increases in incomes in the mushroom sector, the energy sector, the transportation sector, and the commerce sector.
- 2. Now they have increased "money". Hence, they consume more.
- 3. This consumption results in increases in demands.
- The round continues to the third, the fourth, and eternally. It is sensible to stop at the second round.

For strict formulas, see the next slide.

Equilibrium Output Model

Basic equation

$$\mathbf{x} = \left[\mathbf{I} - \mathbf{A}\right]^{-1} \mathbf{f}$$

• If we know the final demand, we can obtain equilibrium output to provide this final demand. (first round ripple effect)

$$\mathbf{x}_1 = [\mathbf{I} - \mathbf{A}]^{-1} \mathbf{f}_1$$
 Initial increase in final demands

- Output increase creates additional value-added (income)
- Income increase creates additional consumption demands
- we can obtain equilibrium output to provide these consumption demands. (second round ripple effect)

$$\mathbf{x}_2 = \begin{bmatrix} \mathbf{I} - \mathbf{A} \end{bmatrix}^{-1} \mathbf{f}_2$$
 increase in consumption through the first round ripple effect

■ Shall we move to the next presentation….

4

Clarifying Benefits