Priority List Issue Briefs¹

Issue Title	Integration of artificial intelligence and machine learning
Description	Advances in machine learning and artificial intelligence have
	led to an increase in their utilization for the development of
	synthetic biology applications. These algorithms use
	mathematical models and large datasets (e.g., chemical
	information, sequence information) to inform the engineering
	or creation of synthetic biology organisms, products and parts.
	Specific examples include:
	• Protein folding predictions to streamline biosynthesis across
	various industries (e.g., Alpha Fold and ESMFold)
	• Machine learning models for the creation of novel,
	customized proteins (e.g., ProtGPT2, Protein DT and
	Chroma)
	• Genomic design using large language models are applied to
	DNA, RNA, and epigenetic elements, as well as for predicting
	novel DNA sequences for synthetic biology (e.g., DNA-
	Diffusion project uses AI to generate synthetic DNA
	sequences based on text instruction)
	• Use of artificial intelligence to improve bioproduction
	through informed modification of biosynthetic pathways
	• Bio-computation involving the application of synthetic
	biology to transform artificial intelligence using biology-based
	computing, DNA data storage and molecular circuits (e.g., to
	overcome the limitations in silicon-based computation,
	leveraging the computing capacity of engineered organisms
	like Escherichia coli)
	• Sensing and signalling for artificial intelligence systems, such
	as the development of responsive crops and artificial
	intelligence-guided precision agriculture (e.g., InnerPlant
	developed engineered stress-sensing plants which can be
	monitored by satellites and John Deere agricultural equipment
	cameras)

¹ Information gathered from the members of the multidisciplinary Ad Hoc Technical Expert Group on Synthetic Biology. Descriptions complemented with publications published by the Secretariat of the Convention on Biological Diversity.

Timeline (<5 years, 5-10	Significant investments within 5 years. It was noted that
years, >10 years) to	several artificial intelligence and computing companies (e.g.,
realisation	Meta, Google/Deep Mind, Microsoft, NVIDIA and Stability
	AI) are entering into agreements or joint ventures with
	biotechnological companies (e.g., Gingko Bioworks) and/or
	institutes (e.g., Broad Institute). Given rapid development and
	use of artificial intelligence in other industries, it was suggested
	that impacts could be near-term.
Potential impacts on the	• Unknown biosafety risks of novel, synthetic sequences
objectives of the	Disruption of sustainable use practices
Convention	• Facilitated use of genetic resources without benefits-sharing
	• Potential challenges to traceability for potential benefits-
	sharing
Other considerations	Accelerated development of synthetic biology applications
	• Increased efficiency of bioproduction (e.g., through the use
	of improved genetic circuitry)
	• Lower barrier for the creation of modified organisms in low
	containment or without regulatory oversight
	• Potential challenges for environmental risk assessment due
	to automated construction of novel synthetic pathways and
	genetic circuits
	• Potential disruption of traditional industries and supply
	chains (e.g., economic losses for scall-scale farmers)
	• Intellectual property and ownership
	• Market concentration in a few companies
	• Dual-use potential (e.g., creation of toxins or harmful
	compounds)
	• Use of traditional knowledge and changes to traditional
	practices