PREVENTION AND CONTROL OF INVASIVE SPECIES IN HABITAT RESTORATION

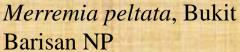
United Nations Environment Programme

Max Zieren, UNEP Regional Office Asia Pacific Arne Witt, CAB International, Nairobi

(max.zieren@unep.org)

April 2014

Beauty of invasive species is deceitful.....and costly...


- IPCC 2 degree rise in temperatures could cost the global economy anything from **0.2-2% of global GDP** (April 2014)
- BUT Invasive species costing the global economy 5% of global GDP (2011, USD 1.4 Trillion)

Yet invasive species grossly ignored in economic development, restoration and core conservation programs

Invasive Alien Species (IAS) and habitat restoration

- Role and impact of IAS on restoration underestimated
- Many fast growing reforestation species are invasive
- Habitat degradation invites IAS
- Much degraded, logged over and fallow land has IAS
- Challenge to rehabilitate ground vegetation cover, whilst removing IAS

Invasive Alien Species – the basics

- Invasive Alien Species (IAS) are "introduced species that become established in a new environment, then spread in ways that are destructive to human interests and natural systems"
- Intentional and non-intentional introductions
- Key entry points or pathways: economic development, logging & major habitat degradation, increased trade & transport
- Invasive species more than a pest -> IAS change ecosystems functioning!
- Prevention better and cheaper than control afterwards

Scope of the Problem

- IAS are **everywhere** and still being introduced or promoted due to carelessness or ignorance e.g. as 'solution' to land degradation!
- *Prosopis juliflora* e.g. invaded c. 800 000 Ha in Ethiopia, c. 600,000 Ha in Kenya, 1.8 mill. Ha in South Africa & 5.6 mill. Ha India
- Cost invasives in EU (Euro 12 billion/yr) an 'Act' in the making to blacklist 'possession, transport, selling or growing species deemed as of Union concern'
- Cornerstone of BD conservation the Protected Areas sytems, are increasingly infested, impacted or being lost
- **Key wildlife** such as One-horned Rhinoceros (Chitwan National Park), Banteng (Baluran NP), or Asian Elephant affected by changes in available fodder
- Reduced agriculture production: USD 21.6 million p.a in SE Asia; Coffee plantations East Java loose 83% production
- Natural forest regeneration severely affected

Impacts of invasive species

Types:

- 1. Economic
- 2. Production & food
- 3. Human health
- 4. Biodiversity & ecosystems

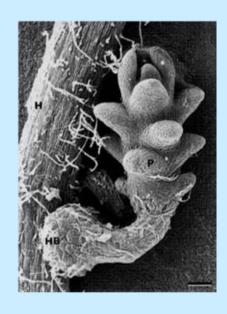
(i) Economic impacts

Australia

- 2681 alien species have become established
- Annual cost of invasive *weeds to crops* USD 1.2 billion; *pasture* USD 462 million; *horticulture* USD 199 million.
- Cost of introduced invertebrates like mosquitoes, honeybees and wasps, fire ants, cattle tick, screw-worm, earth mite, wood wasp USD 4.7-7.5 billion p.a.

USA

• Economic costs of invasive plants and animals are estimated at US\$ 137 billion p.a.


Total costs AUS + USA over USD 140 billion per year

(ii) Food security

Witchweed

(Striga hermonthica)

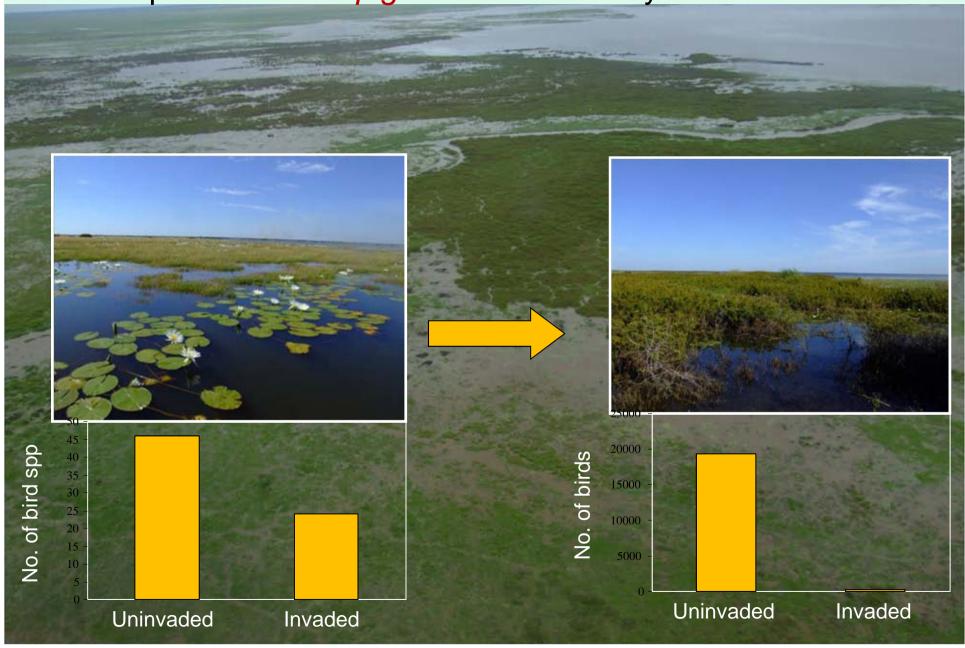
Africa – maize losses of USD7 billion p.a. and impacts on the lives of more than 300 million Africans


(ii) Food security - Impacts on crop and pasture production

Lantana camara poisoning!

- Has invaded majority of pasturelands India (13.2 million ha.) damage estimated USD 924 million per year
- Pastoral losses Queensland (AUS) USD 7.2 million, 1,500 animal deaths, reduction in productivity, loss of pasture, and control costs

(iii) Human & Animal Health - Parthenium impacts



- Prolonged skin contact gives allergenic eczematous contact dermatitis. Inhalation of pollen causes allergenic rhinitis which can become bronchitis or asthma.
- ➤ 1 to 10 years exposure to the weed, 10 20% of the population will develop severe allergenic reactions (McFadyen 1995)

(iv) Habitat & biodiversity impacts – Kafue Flats, Zambia, Impacts Mimosa pigra on bird diversity and numbers


(iv) Habitat & biodiversity – Baluran NP, Indonesia *Acacia nilotica*

CBD and where are we now

- IAS in most NBSAPs & 55% have national legislation, yet not enough 'on-the-ground' follow up
- Focus T9 on 'pathways' yet the problem already there & extensive
- IAS cross-cutting to most Aichi Targets!
- Lack of baseline data on scale of infestations and costs impacts
- Many still unaware or ignorant how serious this issue is

As a result countries and donors not motivated to invest in IAS

CBD targets – threats IAS to Protected Areas in SE Asia (selected only)

Indonesian Protected Areas (incl. WHS, MAB) infested:

- Wasur NP; Lembah Anai NR; Rawa Aopa Watomohae NP;
- Gunung Gede Pangrango NP; Ujung Kulon NP; Meru Betiri NP;
- Alas Purwo NP; Baluran NP; Merapi NP; Pulau Mojo GR;
- Kamojang NR; Bogani Nani Wartabone NP, and many more...

What is at stake?:

- Degradation by IAS leads to additional degradation e.g. fire risks
- Their core conservation values, species and services may be lost;
- Natural habitat regeneration affected seedlings of keystone species can not establish anymore
- Income from tourism down?
- Loss of support/motivation with local government and general public?

CBD - change needed!

- **1. National inventories** what and where, anticipated spread (climate models)
- 2. Full national costs benefit analysis (CBA) of both the monetary and non-monetary impacts of invasives on production systems, human health and ecosystem services; plus PA networks
- 3. Extensive **global & national communications campaigns:**(i) impacts, (ii) control measures, (iii) stop promoting IAS (national pride/indigenous species campaign)
- 4. Getting countries, donor agencies and others such as CBD, FAO, UNDP, UNEP, IUCN, CABI etc to work together under a kind of 'International Protocol'(?)
- 5. Control is possible IF combined with habitat rehabilitation
- 6. Adopt and promote bio-control, as safest and most cost efficient

Challenges habitat restoration

1. Many exotic species suitable are invasive

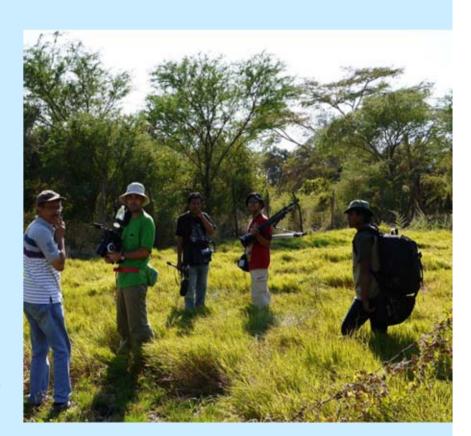
- E.g: *Austroeupatorium inufolium* (South America) introduced Indonesia for control Alang Alang grass now invasive Sumatra island
- *Prosopis juliflora* introduced many sites for firewood and desert control, now noxious weed with extreme impacts and human costs
- Mimosa pigra soil improvement Wonogiri watershed,
 Central Java, severe invasive in wetlands
- Acacia nilotica firebreak Baluran NP, now leading to destruction grass savanna & Banteng population
- Acacia mangium is now an invasive in Borneo

Lessons:

- Ideally go for native species
- Conduct full Risk Analysis (RA) of any introduced species build upon existing RA/quarantine systems in countries

2. Degraded habitat often already with or susceptible to IAS

- E.g logged over Dipterocarp forests or former agriculture land e.g. *Merremia peltata* (Indonesia); *Acacia diplotricha* (Vietnam); *Piper aduncum* (Philippines); *Mikania* or *Chromoleana* on plantations East Java or Timor Leste
- Lesson: We can not rehabilitate without dealing with invasives!


3. IAS control - cost & time considerations key!

- Choice of chemical, mechanical and bio-control
- Chemical/mechanical removal of *Acacia* in Baluran NP takes tens of years, IF without further infestations. Winning this battle too costly and long!
- Cost Zambia approximately USD 450,000 to clear 900 Ha *Mimosa pigra* infestation on the Kafue Flats (USD 500/ha)
- Mechanical control costs range USD 500 20,000/ha/yr
- Fifteen years of mechanical plus chemical control in South Africa cost USD 457 million, yet invasions still increasing!

Chemical and mechanical control useful for containment, yet very expensive, and - on their own, can never treat the millions of Hectares already invaded!

4. IAS control must go hand in hand with habitat restoration

- Stimulate native vegetation recovery –
 e.g. good canopy cover can suppress
 IAS
- Remove competition by IAS for light, nutrients and toxic effects
- Prevent re-growth or new IAS
- Restoration of water quality or hydrology (e.g. lakes, swamps) helps suppressing IAS
- FORIS project: integrated habitat management combined w. IAS control (see video);
 - various treatments: manual-versuschemical & support to adopt bio-control

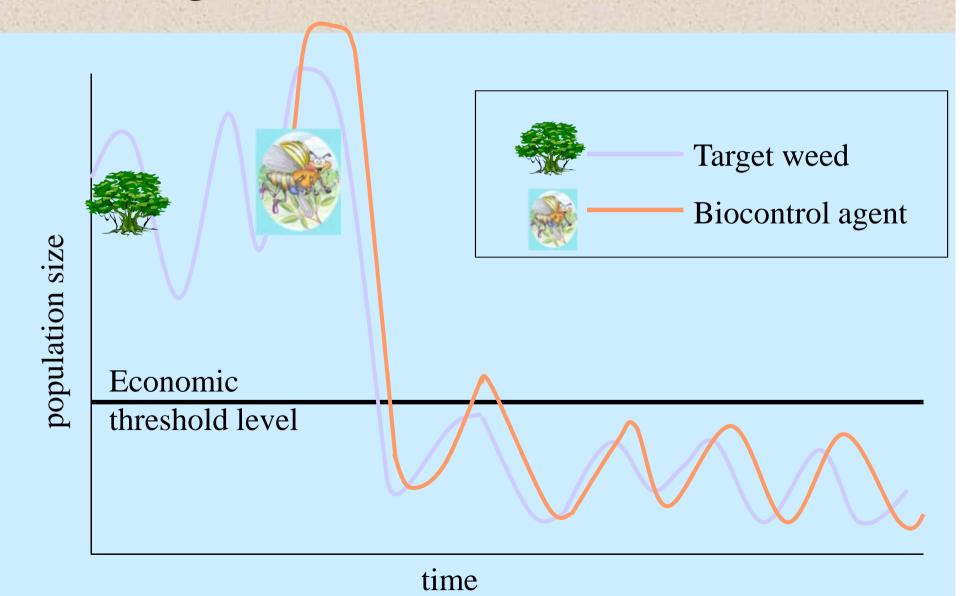
5. Elements for successful restoration

- Multi-facetted (it's certainly not just # seedlings planted)
- Clarifying land-titles & providing income for local communities
- Make economic case with corporate and government on benefits large scale restoration: think about - (i) ecosystem services value; (ii) reduction of disasters, (iii) reducing financial risk for businesses of degraded natural capital like water
- Integrated habitat management plans include IAS & restoration
- IAS control can be mix of chem./mech. & bio-control
- Species selection non invasives!
- Assisted natural regeneration
- Artificial restoration, re-forestation, re-vegetation
- Benefit sharing of improved local environment (monetary and non-monetary)

'The Big Push' – Case for stepping up Bio-Control

Background:

- Biological control the use of host-specific natural enemies (pathogens, mites, and insects) to control invasives
- The control agent can and will not spread to other plants or systems
- Been practiced for many decades by especially USA, Australia, South Africa, Canada, New Zealand, but also Indonesia, Vietnam, Philippines (mostly in agriculture sector).
- Compared to chemical and mechanical control being the most cost efficient – at medium to long term (only start-up investment)
- Entirely safe for environment following extensive tests and safety regulations
- Unfortunately mixed up with alien introductions such as mice, rabbit etc which got out of hand (those were not bio-control!)

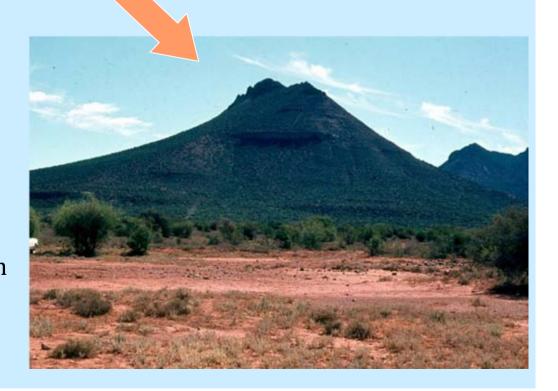

Bio-control - continued

- Very good cost-benefit ratio
- Self-perpetuating populations and often establish throughout the range of the target weed
- Suppresses in natural ways the IAS targeted avoids fallow land
- Biggest risk 'Doing nothing'!

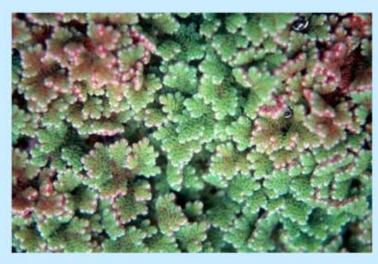
Bukit Barisan National Park

Successful biocontrol does not eradicate the target weed

Some examples of successful biocontrol

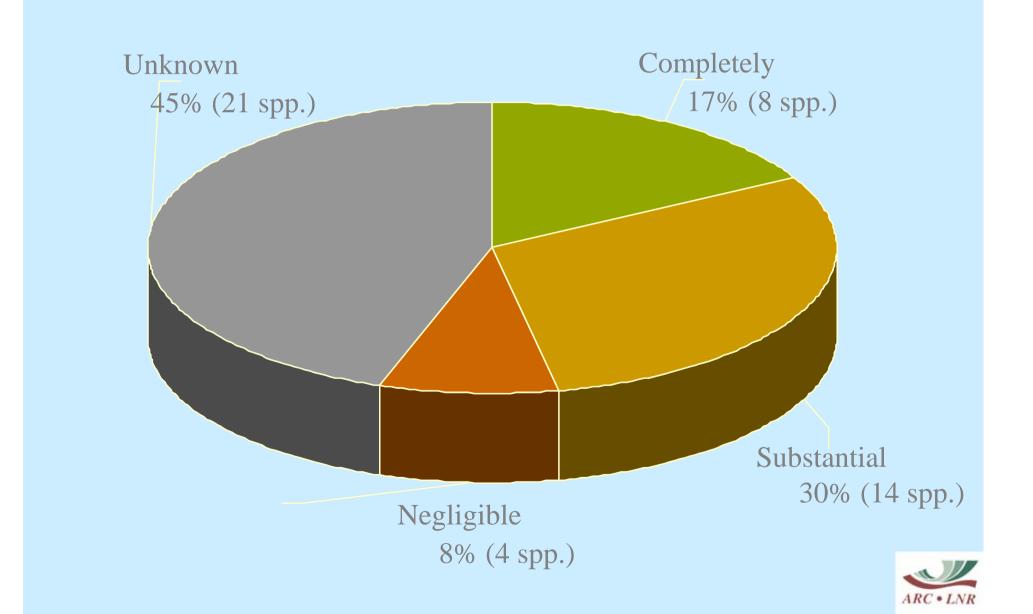

Prickly pear (Opuntia ficus-indica)

Cochineal



Cactus moth

Red water fern (Azolla filiculoides)



Stenopelmus rufinasus

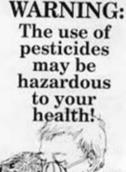
How effective has biocontrol of invasive plants been in South Africa?

Economic benefits and costs of biocontrol

'between the initiation of research until the estimated date at which weed populations would cover all available habitat'

Species	Benefit : Cost ratio
Jointed cactus	1 154 : 1
Red sesbania	45:1
Lantana	34:1
Long-leaved wattle	1 465 : 1
Golden wattle	4 333 : 1
Silky hakea	611 : 1

The alternative ?...pesticides and human health



Pesticides are poison

Poisoning:

Worldwide > 3 million metric tons of pesticides applied/year - 26 million cases of non-fatal pesticide poisonings, 220,000 fatalities & 750,000 chronic illnesses/year

Pesticide resistance:

About 520 insect and mite species, nearly 150 plant pathogens and about 273 weed species are now resistant to pesticides

