

CONVENTION ON BIOLOGICAL DIVERSITY

15 May 2001

NOTIFICATION

Dear Madam/Sir:

Subject: Development of Indicators for Biological Diversity

Indicators are about how to measure progress and achieve targets. Article 7 of the Convention on Biological Diversity (CBD) states:

Each contracting Party shall, in accordance with its particular conditions and capabilities:

- a) Identify components of biological diversity important for its conservation and sustainable use; and
- b) Monitor through sampling and other techniques, the components of biological diversity identified pursuant to paragraph (a) above, paying particular attention to those requiring urgent conservation measures and those which offer the greatest potential for sustainable use.

Pursuant to this article, COP decisions II/9, III/9 and III/10 require that national implementation reports by Parties should include targets and indicators, and that a core set of indicators should be included by governments in their national implementation reports.

Given the complexity of the issue, the lack of data on many indicator variables and the lack of capacity in most developing countries to develop indicators and effectively monitor progress, it became clear from the meetings of the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) and the Conference of the Parties (COP), that the work on indicators is a long-term process.

As a starting point, and to enable the Conference of Parties to be able to report on global trends on biological diversity, it is necessary to compile a set of indicators that are currently being used by Parties as a basis to assist countries to develop their own indicators at the national level as part of their monitoring processes.

To: National Focal Points of the CBD

United Nations Environment Programme Tel: (514) 288.22.20 Fax: (514) 288.65.88 Email: secretariat@biodiv.org Web: www.biodiv.org The Executive Secretary, with the assistance of a liaison group of experts, prepared a core set of indicators derived from various international and national initiatives, which was presented to the Conference of Parties at its fifth meeting. Some Parties felt that a global set of core indicators was premature and requested the Executive Secretary to promote the development of indicators at the national level in accordance with recommendation III/5, including the development of a key set of standard questions, a set of principles for designing national level monitoring programmes as well as a list of available and potential indicators.

It is in this context that I am requesting all National Focal Points to the Convention to provide the Secretariat with existing indicators that are currently operational in their respective country. Attached, for your reference, are some indicators that have been developed under various initiatives at various levels which you may use as a reference point. You may add to or subtract from this list, indicate which of the listed indicators are used and provide any other comments, as appropriate. It may be useful to mention the specific purpose for which a particular indicator is used and its success as a monitoring tool for the status and trends of biodiversity.

In providing the indicators please do not restrict yourself to those indicators developed under the CBD process. Indicators developed under other processes such as CSD, State of the Environment Reporting etc. may also be relevant and should be included.

I have also been requested to develop a list of principles to guide Parties in developing their indicators and a set of standard questions that indicators can help to answer for policy makers. I am attaching as Annex 1 some proposed principles and questions for your comments.

We would appreciate if you could complete the table and return it to the Secretariat together with your comments **no later than 15 June 2001**.

Please accept the assurances of my highest consideration.

Hamdallah Zedan Executive Secretary

INDICATIVE LIST OF BIODIVERSITY INDICATORS

	INDICATORS	USED OR NOT	COMMENTS
	Forestry biodiversity		
	Total forest area		
	Total Forest area as a % of total land area		
	% forest cover by forest type(primary,		
	secondary or plantation)		
	Ratio between exotic species and native		
	species in plantation area		
	Forest area change by forest type (primary,		
	secondary or plantation)		
	Per capita wood consumption		
	Change in land use, conversion of forest		
	land to other land uses (deforestation rate)		
L	Self-generating area per habitat type		
TA	Self-generating area as a % of total area		
BI	Fragmentation of forests		
HA	% protected area of total forest area		
1/1	% protected area with clearly defined		
EN	boundaries		
LS	% forest managed for wood production		
SY	% forest land managed for recreation and		
Ö	tourism to total forest area		
EC	Area and % of forests managed for		
	catchment protection		
	% forest protected areas by forest type by		
	age, class, and successional stage)		
	Area and length and numbers of biological		
	corridors		
	Annual volume and area of timber		
	harvested-indigenous and plantation		
	Contribution of forest sector to GDP		
	Number and size of forest fires		
	Reforested and afforested areas		
	Area and extent of degraded lands		
	reclaimed through forest operations		
	Relationship between forest cover and		
	trequency of flooding		

	Changes in the proportions of stands	
	managed for conservation and utilization	
	of genetic resources (gene reserves seed	
	collection stands, etc	
	Area and % of forest area affected by	
	anthropogenic effects (logging harvesting	
	for subsistence).	
	Area and percentage of forest area affected	
	by natural disasters (insect attack, disease	
	fire and flooding)	
	Forest conversion affecting rare	
	ecosystems by area	
	Extent of mixed stands	
	Managed forest ratio	
	Wood harvesting intensity	
	Estimate of carbon stored	
	Absolute and relative abundance, density,	
	basal area, cover, of various species	
	Threatened tree species as a percentage of	
	the 20 most used for commercial purposes	
	Number of threatened, keystone, flagship	
	species	
	Number of extinct, endangered,	
	threatened, vulnerable and endemic forest	
	dependent species by group (e.g. birds,	
	mammals, vertebrates, invertebrates)	
S	List of flora and fauna	
HE	Existence of procedures for identifying	
E	endangered, rare, and threatened species	
SF	Existing strategies for <i>in situ/ex situ</i>	
	conservation of genetic variation within	
	commercial, endangered, rare and	
	threatened species of forest flora and	
	fauna.	
	Number of forest dependent species whose	
	populations are declining	
	Population levels of representative species	
	from diverse habitats monitored across	
	their range	
	Number and extent of invasive species	

	Agricultural Biodiversity	
COSYSTEM/HABITAT	Agricultural area by crops (cereal, oil	
	crops, forage, woodlands)	
	Agricultural area (intensively farmed,	
	semi-intensively farmed and uncultivated)	
	Change in area of agricultural land	
	(converstion to or from agriculture)	
	Intensification and extensification of	
	agricultural land use	
	Use of agricultural pesticides	
E		
	Number of species threatened by	
	agriculture by group e.g. birds, mammals,	
	vascular plants, vertebrates, invertebrates)	
	Number of vertebrate species using habitat	
	on agricultural land by species.	
	Differences in species diversity and	
S	abundance of arthropods and earthworms	
Ē	in organically and conventionally	
EC	cultivated arable land	
SPI	Rate of change from dominance of	
•1	nondomesticated species to domesticated	
	species	
	Species diversity used for food	
	Erosion/Loss of genetic diversity	
	patrimony	
	Crops/livestock grown as a percentage of	
	number of 30 years before	
	Accession of crops and livestock in ex-situ	
	storage (number or percentage)	
	Replacement of landraces with few	
	imported ones	
	Replacement of indigenous crops	
	Accessions of crops generated in the past	
	decade (per cent)	
E	Coefficient of kinship or parentage of	
GEN	crops	
	Inbreeding/outbreeding rate	
	Rate of genetic interchange between	
	populations (measured by rate of dispersal	
	and subsequent reproduction of migrants)	

	Inland Waters Biodiversity	
АТ	Surface water quality: Nitrogen, Dissolved	
	oxygen, pH, pesticides, heavy metals,	
	temperature	
	BOD on water bodies (re: eutrophication)	
	Ground water quality: nitrates, salinity,	
	toxicants	
	Stream flow	
IT	Stream sediment storage and load	
M/HAB	Changes in vegetation type along water	
	courses	
	Water resource vulnerability index	
TE	Ratio between maximum sustained yield	
YS	and actual average abundance	
SC	Glacier fluctuations	
Ŋ	Groundwater level (water table level)	
H	Wetland area	
	Extent of wetland drainage and filling	
	Fish family diversity	
	Benthic macroinvertebrates: communities	
	Macrophytes: species composition and	
	depth distribution	
	Threatened freshwater fish species as a %	
	total freshwater fish species known	
	Number of inland fish species introduced	
	Number of exotic flora and fauna species	
	e.g. fish, aquatic weeds	
	Number of endemic flora and fauna	
	Changes in distribution and abundance of	
	native flora and fauna	
	Number of extinct, endangered,	
S	threatened/endangered/vulnerable/	
HE	endemic inland water species by group e.g.	
E	birds, aquatic mammals, invertebrates,	
SP	amphibians, vascular plants, bottom fauna,	
	Changes in fish catches by species	
	Species richness (number per unit area,	
	number per habitat	
	Indicator species	

	Coastal and Marine Biodiversity	
	% coastal zone with populations	
	exceeding 100 inhabitants/km ²	
	Annual rate of mangrove conversion	
	Frozen ground activity	
M	Coral chemistry and growth pattern	
E	Lake levels and salinity	
ζS.	Shoreline position	
SC	# of large scale bottom trawling vessels	
SC	per 1 000km. of coastal area	
E	E.coli counts and nutrient levels as % of	
	baseline levels	
	Surface displacement	
	Amount of poison chemicals and dynamite	
	used for reef fishing.	
	Algae index	
-	Threatened fish species as a percentage of	
E	total fish species known	
C	Change in proportion of fish catches by	
PE	species per specific season	
S.		
	1	
	General Indicators ¹	
	Frozen ground activity	
	Karst activity	
LA'	Slope failure (landslides)	
II	Relative wilderness index (please give	
YSTEM/HAB	your definition)	
	Changes in limiting factors for key species	
	e.g. nest holes for parrots, fruit bat roosting	
	trees	
	Soil quality	
OS	Volcanic unrest	
EC	Δ in total area of a particular habitat type	
	Changes in largest block of a particular	
	habitat type	

¹ These are indicators that apply to more than two thematic areas and have been listed together to avoid repeating them

	Changes in average size of a particular	
	habitat type	
	Change in mean nearest distance between	
	blocks of a particular habitat type	
	Change in average width of break in an	
	identified habitat corridor	
	Total area of protected areas (use IUCN	
	definition of protected areas)	
	% of protected area to total area	
	Change in habitat boundaries	
	Percentage area in strictly protected status	
	Percentage of area dominated by non-	
	domesticated species	
	Degree of connectivity of food web	
	Existence of institutional capacity, policy	
	and regulatory framework for the planning,	
	management and conservation of	
	biological diversity	
	Size and distribution of protected areas	
	Change in number and/or distribution of	
	keystone or indicator species	
	# of introduced species and genomes	
	Change in presence, location, area,	
	numbers of invasive plant or animal	
	species	
	No of introduced species and genome	
	Quantity of specimens or species of	
	economic/scientific interest removed from	
	the environment	
	Density of road network	
IE	Percentage of area dominated by non	
ECI	domesticated species occurring in patches	
SPH	greater than 1 000 sq. km.	
	Population growth and fluctuation trends	
	of special interest species	
	Sex ratio, age distribution and other	
	aspects of population structure for	
	sensitive species, keystone species, and	
	other special interest species	
	Presence of <i>taxa</i> on environmental	
	integrity	
	Recorded species present by group	
	Indigenous species present by group	
	Non-indigenous species present by group	

# of endemic/threatened/	
endangered/vulnerable species by group	
Temporal change in number of species	
(increase/decrease)	
Change in composition of species overtime	
Species Group: total number versus	
threatened species	
Species with small populations vs larger	
population size	
Spatial differences in the number of rare vs	
common species	
Spatial differences in the restricted vs wide	
range species	
Representativeness of intra-specific	
variability of endangered and	
economically important species	
Diversity of native fauna	
Species richness (number, number per unit	
area, number per habitat area	
Species threatened with extirpation	
Species threatened with extinction	
(number or percent)	
Endermic species threatened with	
extinction	
Species risk index	
Species with stable or increasing	
populations	
Species with decreasing populations	
Threatened species in protected areas	
Endemic species in protected areas	
Threatened species in ex-situ collections	
Threatened species with viable ex-situ	
populations	
Species used by local residents	

Annex 1

An indicative list of a key set of principles for designing national level monitoring programmes and indicators

Given the widely varying conditions among countries most national level indicators will be country specific. Therefore in order to come up with a set of biodiversity indicators which can create a minimal level of comparability, coherence and consistency, it is important to have an agreed set of principles within which such indicators will be developed. These principles should address matters such as.

The way indicators relate to management questions;

The ability to show trends;

The ability to distinguish between human-induced and natural change;

The degree to which indicators are amenable to straightforward interpretation;

The ability to provide reliable results; and

The question for baselines for measurement, in light of the fact that application of preindustrial baseline may often prove problematic.

Representativeness

In order to be broadly applicable an indicator should provide a representative picture of the environmental conditions, pressures or responses it is supposed to measure.

Availability of affordable data

Good quality data should be available at a reasonable cost or it should be possible to initiate a monitoring process that will make it available in future. Information costs money and time to obtain and many countries do not have the resources and capacity to generate such information in the short term. Only those indicators where data is available and can be obtained at minimum cost should be considered for the first track.

User-Driven

An indicator must be user-driven in order to be a useful monitoring tool. The conservation of biological diversity is a national and sometimes local responsibility. Parties have sovereign rights over their biological resources and can use them according to their national priorities. Similarly monitoring of these resources should also be driven by national priorities and indicators should be part of a country's strategy for conserving biodiversity. Imposing indicators will not work because the ultimate monitoring should be done at national and local levels.

Simplicity

The KISS principle must apply to indicators. An indicator must be relatively simple to understand and appealing to the target audience. Even complex issues and calculations should eventually yield clearly presentable information that the public and policy makers can easily understand.

Determinable baseline

For an indicator to be able to reflect true conditions and trends it must relate to agreed baseline conditions. The baseline should be meaningful and should reflect national priorities for biodiversity conservation. Baselines should be dynamic to accommodate new information and situations.

Ability to aggregate information

An indicator should not present very narrow parameters. Indicators that aggregate information on broader issues should be preferred. For example forest canopy temperature is a good indicator for forest health as compared to other indicators.

Sensitivity

An indicator should be able to detect a small change in the system. This will enable environmental managers to determine if small or large changes are relevant for monitoring.

Reliability

A reliable indicator is based on scientifically credible information. Two or more measurements of the same indicator should yield the same results. Different environmental managers should be able to get the same conclusions using the same indicator. Such an indicator can easily be applied at different spatial levels.

Integrative

No one has yet been able to come up with sustainable development indicators that integrates the social, economic and environmental dimensions. It is however useful to attempt to develop such indicators since biodiversity loss is caused more by socio-economic pressures than biological ones.

Validity

An indicator should be a true reflection of the facts. The data should be collected using scientifically defensible techniques. The indicator should be verifiable and reproducible. Methodological rigor is important to make the data credible for both experts and policy makers.

Time-series data

An indicator must be responsive to changes in time and/or space in order to reflect the future trends. The relevance of an indicator should therefore be at least 10-12 years. Policy makers

would like to make policies not only on the basis of current situation but also on the basis of future trends.

Policy Relevance

Indicators should show the condition and trends of biodiversity. Since there are many threats to biodiversity which emanate from certain policies, indicators should be targeted at policy makers who can put into place corrective measures to reduce the threats to biodiversity. Hence these indicators should be policy relevant.

Stability

An indicator should be stable to be able to distinguish between human induced and natural fluctuations. For example in developing indicators for forestry biodiversity it is important to distinguish between an indicator for forest decline due to anthropogenic causes from that resulting from natural causes.

An indicative list of a key set of standard questions that indicators help to answer for policy makers

A first step towards developing an indicator set on biodiversity, could be to identify key questions that indicators can help to answer for environmental managers and policy makers. The following questions are being proposed for consideration by SBSTTA.

State

- i. What is the current state of biological diversity (ecosystem health, species levels, genetic diversity, state of ex-situ conservation-gene banks)?
- ii. What are the major trends in the status of biological diversity at all levels(ecosystem, species, and genes)?
- iii. What is the state of knowledge on biological diversity?
- iv. What are the current goods and services derived from biological diversity (consumptive and non-consumptive)?
- v. To what extend have geographic areas and major ecosystem types been identified, assessed for risk and prioritized in terms of needed action?
- vi. Is progress being made in achieving major targets and objectives set out in planning processes/

Pressure

- i. What baseline should be adopted for trend analysis of biodiversity?
- ii. What are the most direct and indirect threats to biodiversity?
- iii. Which of these threats are natural and which are anthropogenic?
- iv. Are these threats increasing, declining or stable?
- v. What are the linkages between these primary threats and changes in biodiversity status?

Response

- i. Have response programmes and policies been implemented and what effect are they having?
- ii. Are sufficient resources being allocated to implement biodiversity-related plans?
- iii. Are underlying as well as direct causes of biodiversity loss being addressed?
- iv. To what extent has biodiversity been integrated into relevant sectoral and crosssectoral plans, programs and policies? How effective has this integration been?
- v. To what extent have existing financial and other incentives supporting the objectives of the CBD?
- vi. To what extent have major biodiversity values of each country been identified?
- vii. Is an effective biodiversity monitoring system in place?
- viii. Are there early warning signs of problems that require urgent attention?
- ix. Are there new opportunities for action requiring attention