

- Rationale why shall we care about the value of land
- **Methodologies** which models are currently available
- **Approach** is there a cost-effective integrated approach
- Country case studies where is being applied

Rationale

- Land resources support life, underpin the economies of nations and the livelihoods of people across the world
- In many places these resources are being degraded by a series of pressures, and climate change will only make things worse
- Unsustainable land uses and practices take place for many different reasons, and may produce irreversible losses in fragile ecosystems
- The value of land resources to national development and poverty reduction is often not understood properly
- Investments in land, sectors or technologies driven by short-term gains may generate huge negative externalities, leading to serious depreciation of natural capital

Land acquisitions

- "Farms Race" (The Economist, May 21st 2009)
 - Large scale land acquisitions by sovereign-wealth funds (government-to-government)
 - Projects are large, risky and controversial
 - Traded value of land does not reflect its total economic value

Sustainable land management

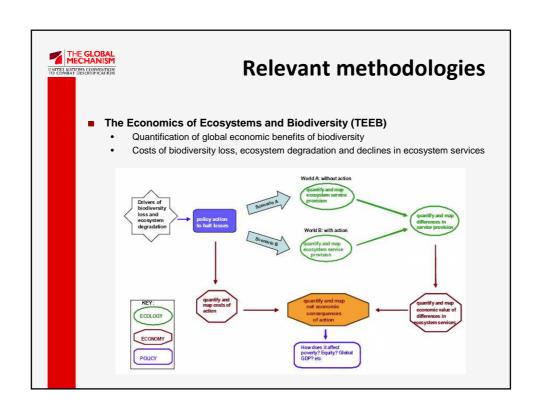
- What drives decisions to use/manage natural resources responsibly and sustainably?
- Why are the economic benefits of SLM not recognised?
- ⇒ Benefits of SLM are often difficult to specify
- ⇒ Several of these benefits have a public goods character and/or are not traded in a market
- Often a mismatch between the stakeholders that pay the (opportunity) costs of maintaining an environmental benefit (e.g. by not converting a forest to cropland) and the beneficiaries of that benefit (e.g. downstream water users benefiting from the regulation of water flows).

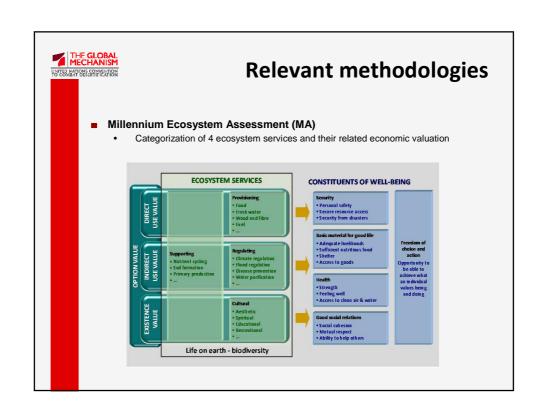
identification of incentives for SLM mobilization of financial mechanisms

Understand the unexpected

- Some of the costs of land degradation and benefits of SLM can be unexpected but of great significance
- For example, agricultural lands are the source of 30% of GHG emissions, whilst conversely soils have the potential to be a major 'sink' for carbon sequestration
- Even remote impoverished drylands and fragile ecosystems may be endowed with substantial natural wealth (e.g. Salar de Uyuni in Bolivia: the 10,000 sq km high-altitude salt flat stores more than half of the world's supply of lithium, but is also a tourist attraction and a natural habitat for many species)

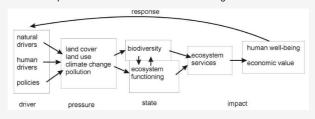
difficult choices and tradeoffs




Supporting decision making

- 1. Reveal the economic costs and benefits of land use conversion, or of different types of land management
- 2. Show the interests of different groups of stakeholders in land and ecosystem management, thereby providing a basis for conflict resolution and integrated, participatory planning of resource management
- 3. Calculation of economic efficient land management options
- Provide the basis for setting up Payment for Ecosystem Services type of schemes, for allocating funds from the beneficiaries of ecosystem services to the providers of these services

- Rationale why shall we care about the value of land
- **Methodologies** which models are currently available
- **Approach** is there a comprehensive integrated approach
- Country case studies where is being applied


Relevant methodologies

- Natural Capital Project (WWF, Stanford)
 - Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST)
 - Development of natural capital database
- Land Degradation Assessment in Drylands (LADA)
 - Development of global indicators for land degradation
 - Use of Sustainable Livelihoods Framework
 - Global baseline for future monitoring
- Hein & de Groot
 - Partial valuation concept focussing on a small number of ecosystem services providing the bulk of benefits
- Global Methodology for Mapping Human Impacts on the Biosphere (GLOBIO)
 - Analysis of changes in land use and its impact on ecosystem services
- Dynamic Integrated Model of Climate and the Economy (DICE)
 - Estimated value on the negative effects of global warming in a number of crucial areas such as agriculture

Relevant methodologies

- OECD Driver-Pressure-State-Impact-Response (DPSIR) Framework
 - Development of DPSIR Framework for land degradation

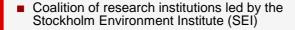
- Other relevant models:
 - Landscape Ecological Decision & Evaluation Support System (LEDESS)
 - Conversion of Land Use and its Effects (CLUE)

Earlier studies

- Studies on the costs of land degradation (GM, Berry et al., 2003)
 - 7 country case studies showed $3-7\ \%$ loss of agricultural GDP due to land degradation
 - Investment required in remedial action an order of magnitude smaller than the estimated costs to the national economy
- Studies on 'costs of inaction' (WB, Rydén, 2005)
 - 25% increase in number of hungry people in Africa south of the Sahara due to land degradation and agricultural yield changes between 2000 2010
- Economic returns in success stories (GM, Reij & Steeds, 2003)
 - 30 % in irrigation, Mali
 - 20 % in soil and water conservation, Niger
 - More than 20% in forestry, Ethiopia
 - 12 % in forestry, Tanzania
 - Over 40% small-scale irrigation in northern Nigeria & Komadougou valley,

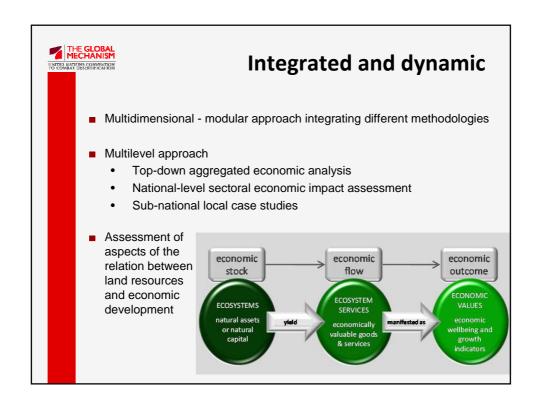
not enough to influence policy and decision making

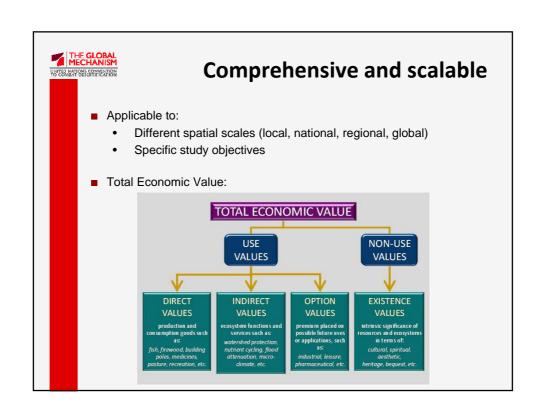
- Rationale why shall we care about the value of land
- **Methodologies** which models are currently available
- **Approach** is there a cost-effective integrated approach
- Country case studies where is being applied



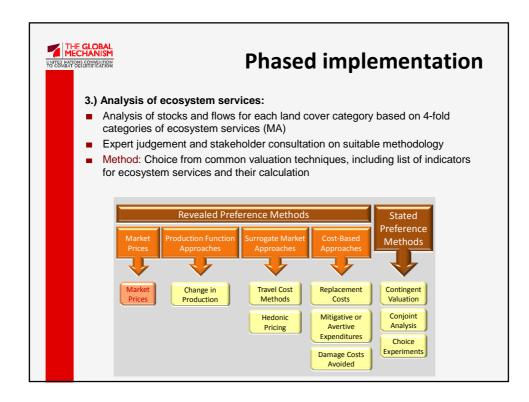
GM spearheaded a new initiative

- International workshop focusing on costs of inaction & opportunities for investment
 - Economic rates of return can be as high as 30 %
 - Economic losses can be several % points GDP
- New evidence needed of the total economic value of land resources
 - Total economic value of land
 - · Total economic costs of land degradation
 - Total economic return of SLM
- Notion of global public good in addition to private benefits
 - · Regional and global costs
- Resurgence of sustainable development paradigm green economy
 - · Rethink the discount rates




Economic valuation of land

- Innovative methodological approach for assessing the value of land, the costs of land degradation and the benefits of SLM
- The **goal** is to increase public and private investments in SLM through the generation of scientifically rigorous arguments to **demonstrate the economic benefits** of SLM as opposed to the costs of unsustainable business-as-usual practices
 - · identification of barriers to SLM and incentives
 - · assessment of alternative scenarios
 - evaluation of risks and potential returns on investment
 - · mainstreaming into relevant development frameworks


Phased implementation

1.) Scoping:

- Identification of scope, location, spatial scale and strategic focus based on stakeholder consultation
- Preparation of background information on socio-economic and environmental context

2.) Assessment of land cover type:

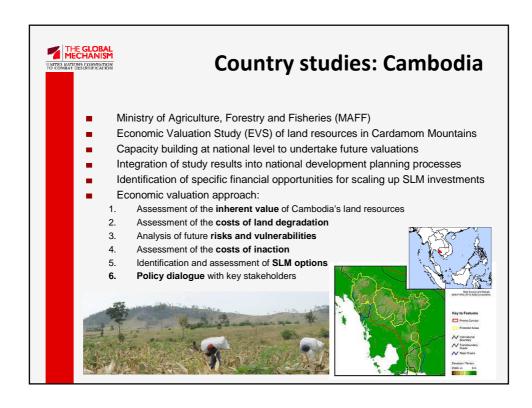
- Assessment of quantity, spatial distribution & ecological characteristics of land cover
- Method (national level): GIS analysis with categorization by agro-ecological zones (governments, FAO)
- Method (local level): participatory GIS, supplemented with CLUE or LEDESS model

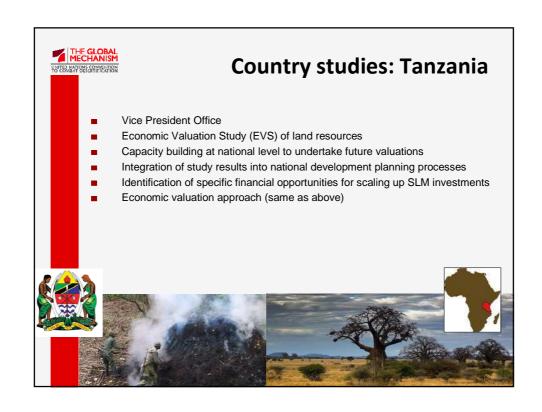
Phased implementation

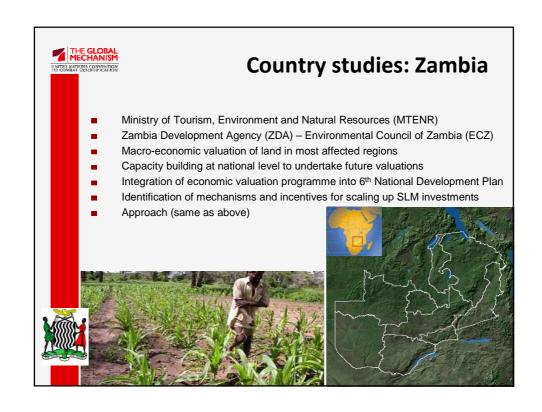
4.) Economic significance of study area:

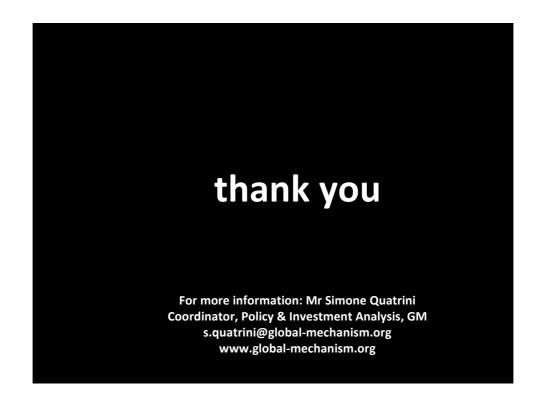
- Analysis of role of ecosystem services in community livelihoods (local) and overall economic development (national)
- Method (local): Secondary statistics & field research
- Method (macro-economic): National accounting frameworks

5.) Assessment of land degradation:


- Identification of patterns, pressures, spatial distribution, causes, driving forces
- Analysis of future risks & vulnerabilities
- Assessment of 'costs of inaction'
- Method: GIS analysis including defined set of degradation drivers


6.) Sustainable Land Management:


- Analysis of options for reducing/removing degradation pressures, including their economic viability and suitable locations
- Method: GIS analysis, perhaps supplemented by models as LEDESS or CLUE



- Rationale why shall we care about the value of land
- **Methodologies** which models are currently available
- Approach is there a cost-effective integrated approach
- Country case studies where is being applied

